9-1: Adding/Subtracting Polynomials

Objectives

<u> </u>			
NCSCOS – 1.01 - Describe I	oolynomials - Ad	d/subtract polynomials	
I. Description of Polynomia	<u>als</u>		
- monomial → an expression	that is a	, a	, or a
of a number and one or mor	e variables.		
<u>Ex:</u> ,			
- <u>degree of a monomial</u> → t			of its variables.
Example 1: Find the degree	e of each monomia	l.	
(a) $\frac{1}{2}x \rightarrow \text{Degree:}$		(b) $3x^2 \rightarrow \text{Degree}$:	
(c) $7x^2y^3 \rightarrow \text{Degree}$:		(d) -5 → Degree:	
(e) $0 \rightarrow \text{Degree}$:		(f) $5x^0 \rightarrow \text{Degree}$:	
- polynomial → a	or the s	um or difference of	or more monomials.
Ex: $3x^4 - 2x^3 + x^2 - 1$			
- standard form of a polyno	$\underline{\mathbf{mial}} \rightarrow \mathbf{a}$ form of a	polynomial where the degree	ees of its monomial
terms	from	to	
Example 2: Are these polyi	nomials in standar	d form? Yes or No.	
(a) $9x^3 - 5x^2 - 3x + 4 \rightarrow$	(b) $6x^2 + 8$ –	\rightarrow (c) $2x^4 + 3x^2 -$	$x^3 + 4x - 1 \rightarrow \underline{\hspace{1cm}}$
- <u>degree of a polynomial</u> →	the	exponent or sum of expo	onents in its monomials
Example 3: State the degree	e of each polynom	ial.	

(a) $x + 1 \rightarrow Degree$: ____ (b) $2x + x^2 - 3 \rightarrow Degree$: ____ (c) $2xy - 3x^2y + x \rightarrow Degree$: ____

Classification of Polynomials Chart

Polynomial	Degree	Name using Degree	Number of Terms	Name using Number of Terms
1.) 5x + 4				
$2.) \ 2x^2 + 3x - 5$				
3.) 6x ³				
$4.) 9x^4 - 3x^3 - x + 2$				
5.) 8				

Example 4: Write each polynomial in standard form. Then name each polynomial based on its degree and number of terms.

(a)	$5 + 2x \rightarrow$	name:	
\ /			

(b)
$$3x^6 - 4 + 2x^2 + 5x^3 \rightarrow$$
 _____ name: _____

II. Adding and Subtracting Polynomials

- when adding polynomials \rightarrow add _____ terms

- when subtracting polynomials → change _____ on the subtracted polynomial (using the distributive property) and then combine _____ terms

Example 5: Simplify.

(a)
$$(4x^2 + 6x + 7) + (2x^2 - 9x + 1) =$$

(b)
$$(2x^3 + 5x^2 - 3x) - (x^3 - 8x^2 + 11) =$$